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We study the Fourier transform of the local density of states �LDOS� in graphene in the presence of a single
impurity at high magnetic field. We find that the most pronounced features occur for energies of the scanning
tunnel microscope tip matching the Landau-level energies. The Fourier transform of the LDOS shows regions
of high intensity centered around the center and the corners of the Brillouin zone �BZ�. The radial intensity
dependence of these features is determined by the form of the wave functions of the electrons in the quantum-
Hall regime. Moreover, some of these regions break rotational symmetry, and their angular dependence is
determined by the chirality of the graphene electrons. For the zeroth Landau level, the ratio between the
features at the corners and center of the BZ depends on the nature of the disorder: it goes to zero for potential
disorder, and is finite for hopping disorder. We believe that a comparison between our analysis and STM
experiments in the very high magnetic field regime may help understand the form of the quasiparticle wave
function, as well as the nature of disorder in graphene.
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The Friedel oscillations in the local density of states
�LDOS� in graphene in the presence of impurity scattering
have recently given rise to a lot of theoretical and experimen-
tal interest.1–9 The low-energy Friedel oscillations resulting
from intranodal scattering decay atypically as 1 /r2,1,2 while
the oscillations due to internodal scattering decay as 1 /r,4 as
expected for two-dimensional systems.3,10 We remind the
reader that intranodal scattering denotes the scattering of a
quasiparticle by an impurity such that a small change in its
momentum occurs �the quasiparticle does not hop from one
Dirac point to another�, while internodal scattering denotes
scattering in which a large change of momentum occurs,
such that the quasiparticle hops between two Dirac points.
Both processes conserve the energy of the quasiparticle. The
1 /r2 anomalous decay, and in some cases the breaking of the
rotational symmetry of the high-intensity features in the Fou-
rier transform scanning tunneling spectra �FTSTS�, are mani-
festations of the chirality of the electrons in graphene. These
features have already been observed experimentally for epi-
taxial graphene.6 It is also interesting to note that for exfoli-
ated graphene, the Friedel oscillations corresponding to in-
tranodal scattering seem to decay as 1 /r,8 and not as 1 /r2,
which may mean that some internal symmetry-breaking
mechanism is at work in this system.

It appears therefore that the LDOS in the presence of
impurity scattering in graphene can retrieve important infor-
mation about the physics of its quasiparticles, specifically
about their wave function. Here we use this to study the
wave functions of the graphene quasiparticles in the
quantum-Hall-effect �QHE� regime. This issue is of particu-
lar importance for understanding why the QHE arises in ex-
foliated, but not in epitaxial graphene, despite the presence
of Landau levels �LLs� in both their spectra.

We focus on the regime of very strong magnetic field �of
order of and above 50 T�, when the magnetic length is of the
order of 20–30 lattice constants, and when the FTSTS fea-
tures may be discernable in an experiment. For much larger
magnetic fields, the corresponding LL energy is too big, and
no longer permits approximating the quasiparticle dispersion
as linear. Furthermore, at huge magnetic fields �of order of

thousands of Tesla�, when the magnetic length and the lattice
constant become of the same order of magnitude, the intra-
nodal and internodal scattering features overlap, which
makes the FTSTS features harder to interpret �one should
note that the distance between these features is given roughly
by the inverse of the lattice constant, while their size is given
by the inverse of the magnetic length�. On the other hand,
magnetic fields that are much smaller ��1 T� will give rise
to Fourier-space features that are very sharply peaked and
harder to analyze due to precision limitations.

For a given value of the magnetic field we calculate the
FTSTS spectra when the tip bias matches the energy of the
Landau levels, focusing in particular on the zeroth and the
second LL. For energies of the tip situated between two Lan-
dau levels, within the approximations we use �Landau levels
constant throughout the sample, single-impurity scattering,
energy conservation�, the intensity of the FTSTS spectra is
negligible. We observe that for the zeroth LL, only high-
intensity regions corresponding to intranodal scattering and
to scattering between equivalent nodes are present �at the
center of the Brillouin zone �BZ� and reciprocal-lattice
points, respectively�, while no features can be identified at
the corners of the BZ corresponding to scattering between
nonequivalent nodes. The scattering features are rotationally
symmetric and decay in a Gaussian manner, consistent with
the wave function of the quasiparticles in the zeroth LL of
graphene.

For higher Landau levels, our calculations reveal both in-
tranodal and internodal scattering features. The intranodal
ones, as well as the ones corresponding to scattering between
equivalent nodes are rotationally symmetric. However, the
patterns corresponding to scattering between nonequivalent
nodes are asymmetric. Their asymmetry is a consequence of
the chirality of the graphene quasiparticles. The radial depen-
dence of these features stems from the electronic wave func-
tion of the Landau levels �the intensity is proportional to an
integral of a Gaussian and two Hermite polynomials which
ends up proportional to a Laguerre polynomial�, and shows
intensity minima and maxima. The scale of these fluctua-
tions, as well as the scale associated with the Gaussian decay,
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are proportional to the inverse magnetic length.
The tight-binding Hamiltonian for monolayer graphene is

H =� d2k��ak�
†bk� f�k�� + H.c.� , �1�

where the operators a†, b† correspond to creating electrons
on the sublattice A and B, respectively, and

f�k�� = − t�eik�·a�1 + eik�·a�2 + 1� . �2�

Here a�1�a��3x̂+3ŷ /2�, a�2�a�−�3x̂+3ŷ/�2, t is the nearest-
neighbor hopping amplitude, and a is the spacing between
two adjacent carbon atoms, which we are setting to 1.

As well known, the energy vanishes at the Dirac points,
which are at �see, e.g., Ref. 11�

K� ��
� = �

a�1
� − a�2

�

3
+ �a�1

� + �a�2
�.

Here �=� is the valley index �there are two such nonequiva-
lent points for each elementary cell of the reciprocal space�,
a1

�= �2� /�3a ,2� /3a�, and a2
�= �−2� /�3a ,2� /3a�, and

�� ,�� span the family of equivalent Dirac points in the re-
ciprocal space. Note that

K� ��
� · a�1 =

2��

3
+ 2��, K� ��

� · a�2 = −
2��

3
+ 2�� .

Thus the Hamiltonian can be expanded around the Dirac
points k� =K� ��

� +q� to find

f��k�� = − v��qx − iqy� �3�

where v=3t / �2a�. Note that here we use a different conven-
tion for the definition of the Fourier transform than in Ref. 11
which yields an opposite sign for f��k�. We work with the
linearized Hamiltonian, and take into account the quasiparti-
cles associated with all the Dirac points in the system. This
can be done by adding the new indices �, �, and � to the
wave function of the quasiparticles, which characterize the
position of the corresponding Dirac point K� ��

� .
In the absence of magnetic field, the eigenfunctions of the

above Hamiltonian have been extensively studied �see, e.g.,
Ref. 12 and references therein�. In the presence of a large
magnetic field �QHE regime�, the eigenfunctions have also
been determined in Refs. 5 and 13 by noting that the Hamil-
tonian reduces to the Hamiltonian of the harmonic oscillator.
The diagonalization of the Hamiltonian for �=1, �=0, and
�=0 �around the point K� 00

1 � can be done by building the
eigenfunction,5,13

��r�� = �
k

eikx

�L
	 0

�0�y − klB
2�

ck,−1

+ �
k,n,	

eikx

�2L
	 �n�y − klB

2�
	�n+1�y − klB

2�

ck,n,	, �4�

where lB=�
 /eB�26 nm /�B�T� is the magnetic length,

and �n�y��n=0,1 ,2. . .�=e−y2/2lB
2
Hn�y� are the eigenfunctions

of the one-dimensional harmonic oscillator �Hn�y� are the
usual Hermite polynomials�. Also, r�= �x ,y�, the ck,n,	’s are

the annihilation operators for quasiparticles in the n+1’st
LL, with wavenumber k along the x direction and band 	,
and ck,−1 is the annihilation operator for a quasiparticle in the
zeroth LL. In the new “c”-operator basis the Hamiltonian is
diagonal, and the Green’s functions are

Gn,k,	��� = �cn,k,	
† ���cn,k,	��� =

1

� + i� − En,k,	
, �5�

We generalize this eigenfunction to take into account all the
Dirac points �for the first BZ this reduces to the wave func-
tions described in Ref. 13� and we obtain

��r�� = �
�=�1,�,�

���
� �r��eiK� ��

� ·r�, �6�

with

���
� �r�� = �

k

eikx

2�L
	�1 − ���0�y − klB

2�
�1 + ���0�y − klB

2�

ck,−1,�

�� + �
n,k,	

eikx

2�2L

	�1 + ���n�y − klB
2� − 	�1 − ���n+1�y − klB

2�
	�1 + ���n+1�y − klB

2� + �1 − ���n�y − klB
2�



ck,n,	,�
�� . �7�

The ck,n,	,�
�� -operators are annihilation operators that beside

the wavenumber k, band 	 and LL index n have also the
valley indices �, � and �. Their unperturbed correlation func-
tions do not depend on the valley indices,

Gn,k,	,�
�� ��� = �cn,k,	,�

†�� ���cn,k,	,�
�� ��� =

1

� + i� − 	En
, �8�

and, in the absence of disorder, correlators of operators con-
necting two different valleys are zero.

We introduce a delta-function impurity localized on an
atom belonging for example to the A sublattice with an im-
purity potential,

V = u�A
†�r� = 0��A�r� = 0� , �9�

where ��r�� is given by Eq. �6�. Using Eqs. �6� and �8� and
the Born approximation, we find that in the presence of the
impurity potential V, the corrections to the correlation func-
tions for the c operators are given by

��ck,−1,�
†�� ck�,−1,��

����  = u
1

�� + i��2 �1 − ���1 − ���

�0�− klB
2��0�− k�lB

2� ,

��ck,−1,�
†�� ck�,n,	,��

����  = u
1

�� + i���� + i� − 	En�

��1 − ���1 + ����0�− klB
2��n�− k�lB

2�

− 	�1 − ���1 − ����0�− klB
2��n+1�− k�lB

2�� ,

��ck,n,	,�
†�� ck�,−1,��

����  = u
1

�� + i���� + i� − 	En�

��1 + ���1 − ����n�− klB
2��0�− k�lB

2�

− 	�1 − ���1 − ����n+1�− klB
2��0�− k�lB

2�� ,
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��ck,n,	,�
†�� ck�,n�,	�,��

���� 

= u
1

�� + i� − 	En��� + i� − 	�En��

��1 + ���1 + ����n�− klB
2��n��− k�lB

2�

− 	��1 + ���1 − ����n�− klB
2��n�+1�− k�lB

2�

− 	�1 − ���1 + ����n+1�− klB
2��n��− k�lB

2�

+ 		��1 − ���1 − ����n+1�− klB
2��n�+1�− k�lB

2�� .

�10�

We can now use these formulas to compute the corrections to
the LDOS due to impurity scattering. Given that the expec-
tation value of the density operator is11,14

�A/B�r�� = ��A/B
† �r���A/B�r�� �11�

with the A and B components of the ��r�� being given by Eq.
�6�, we can write the Fourier transform of the LDOS as

��q� ,�� =� dr�e−iq� ·r���A�r�� + �B�r��e−iq� ·�AB� �12�

�the inclusion of the phase factor in the second term is ex-
plained in Refs. 11 and 14�. A long but straightforward cal-
culation yields for ���q�� due to impurity scattering,

��0�q�� � �
�,��,�,�,��,��

�
−�

�

dk�
−�

�

dye−iqyy

ei�K
����y
�� −K��y

� �y�1 − ��2�1 − ���2 1

�� + i��2

�0�y − klB
2��0�y − k�lB

2��0�− klB
2�

�0�− k�lB
2��k�=k−qx+K

����x
�� −K

��x
� �13�

for the zeroth LL ��=0�, and

��n	�q�� � �
�,��,�,�,��,��

�
−�

�

dk�
−�

�

dye−iqyyei�K
����y
�� −K��y

� �y 1

�� − 	En + i��2

��n�y − klB
2��n�y − k�lB

2���1 + ���1 + ��� + e−iqya�1 − ���1 − ���� − 	�n�y − klB
2��n+1�y − k�lB

2�

��1 + ���1 − ��� − e−iqya�1 − ���1 + ���� − 	�n+1�y − klB
2��n�y − k�lB

2���1 − ���1 + ��� − e−iqya�1 + ���1 − ����

+ �n+1�y − klB
2��n+1�y − k�lB

2���1 − ���1 − ��� + e−iqya�1 + ���1 + �����

���1 + ���1 + ����n�− klB
2��n�− k�lB

2� − 	�1 + ���1 − ����n�− klB
2��n+1�− k�lB

2�

− 	�1 − ���1 + ����n+1�− klB
2��n�− k�lB

2� + �1 − ���1 − ����n+1�− klB
2��n+1�− k�lB

2���k�=k−qx+K
����x
�� −K

��x
� � �14�

for the n+1’st LL and band 	��=	En�.
In this calculation we have neglected the contributions

coming from a quasiparticle being scattered between differ-
ent LL’s, as we work under the simplifying assumptions that
the dominant scattering mechanism is elastic, and that the
energy of each LL is constant throughout the sample. We
have also focused on energies matching the energies of the
Landau levels. For intermediate energies the intensity of the
spectra is greatly reduced in the limit �→0, as it can be seen
from the factor of 1 / ���+ i�−	En���+ i�−	�En��� in Eq.
�10�.

For the zeroth LL ��=0� we compute ���q� ,�� analyti-
cally,

��0�q�� = �
�,�,��,��

��̃0�q� + K� ��
−1 − K� ����

−1 � , �15�

where

��̃0�q�� � �
−�

�

dye−iqyye−�y/lB�2/2e−�y/lB + qxlb�2/2�
−�

�

dk

eiqyklB
2
e−�klB�2/2e−�klB + qxlb�2/2 � e−lB

2 �qx
2+qy

2�/2.

�16�

The corresponding spectrum is plotted in Fig. 1. We note that
there are regions of high intensity corresponding to quasipar-
ticle scattering between two equivalent nodes �at the center
of the first BZ and all equivalent points related via transla-
tion by a reciprocal-lattice vector�, but no high-intensity re-
gions at the corners of the BZ corresponding to scattering
between nonequivalent nodes. This can be seen directly from
Eq. �13� as only the term proportional to �1−��2�1−���2 ap-
pears in ��̃�q� ,�� in the zeroth LL, and this term is nonzero
only if �=��=1. This is related to the fact that in the zeroth
LL the electronic wave functions have only one nonzero
component �A or B�, depending on the type of node
��= �1� on which the electron sits. In order for the electron
to scatter between two nodes, it needs to be able to change
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the sublattice index during the scattering process. However,
for the type of impurities we consider �potential disorder�,
this is not possible. The shape of the observed regions is
rotationally symmetric, and the intensity decays with the dis-
tance from the center in a manner characteristic to the decay
of the ground state of the harmonic oscillator �e−x2

�.

For an energy corresponding to the n+1’st LL, the FT of
the LDOS is given by

��	n�q�� = �
�,�,��,��,�,��

��̃	n������
��� �q� + K� ��

� − K� ����
�� � , �17�

where

��̃	n������
��� �q�� � �

−�

�

dye−iqyy��n�y��n�y + qxlB
2���1 + ���1 + ��� + e−2i���+�−��−���/3�1 − ���1 − ����

− 	�n�y��n+1�y + qxlB
2���1 + ���1 − ��� − e−2i���+�−��−���/3�1 − ���1 + ����

− 	�n+1�y��n�y + qxlB
2���1 − ���1 + ��� − e−2i���+�−��−���/3�1 + ���1 − ����

+ �n+1�y��n+1�y + qxlB
2���1 − ���1 − ��� + e−2i���+�−��−���/3�1 + ���1 + �����

�
−�

�

dke−iqyklb
2
��1 + ���1 + ����n�− klB

2��n�− klB
2 + qxlB

2� − 	�1 + ���1 − ����n�− klB
2��n+1�− klB

2 + qxlB
2�

− 	�1 − ���1 + ����n+1�− klB
2��n�− klB

2 + qxlB
2� + �1 − ���1 − ����n+1�− klB

2��n+1�− klB
2 + qxlB

2�� , �18�

and where we have considered that q is small with respect to 1 /a, hence approximating e−iqya�1. Denoting
Imn�q����−�

� e−iqyy�m�y��n�y+qxlB
2�, we can rewrite the above formula as:

��̃	n������
��� �q�� � ��1 + ��2�1 + ���2�Inn�q���2 + �1 − ��2�1 − ���2�In+1,n+1�q���2 + �1 + ��2�1 − ���2�In,n+1�q���2

+ �1 − ��2�1 + ���2�In+1,n�q���2 + e−2�i��+�−��−���/3��1 − ��2�1 − ���2Inn�q��In+1,n+1
� �q��

− �1 − ��2�1 + ���2In,n+1�q��In+1,n
� �q�� − �1 + ��2�1 − ���2In+1,n�q��In,n+1

� �q�� + �1 + ��2�1 + ���2In+1,n+1�q��In,n
� �q���� .

�19�

We can compute the Imn integrals analytically,

Imn�q�� = ��2NM ! ���nmqxlB − iqylB�/2�N−M

LM
N−M�q2lB

2 /2�e−�qx − iqy�2lB
2 /4, �20�

where Lm
n is a Laguerre polynomial, �nm=sign�n−m�,

q= �q� � is the length of the q� vector, and M and N denote the
smaller and respectively the larger of m and n.

At this point there are a few observations we can make.
The first is that ��̃�q� ,�� contains terms proportional to La-
guerre polynomials �which in general characterize the over-
lap between two LL eigenfunctions15�. A Laguerre polyno-
mial shows a number of zeroes �or “nodes”� given by the
order of the polynomial �e.g., L1 has 1 node, L2 has 2 nodes,
and so on�. As these Laguerrre polynomials appear in the
dependence of the LDOS ���q� ,�� on q, we expect ���q� ,��
to also have a “node” structure. Indeed, the scattering be-
tween nonequivalent Dirac points ������ gives rise to terms
that contain only combinations of In,n+1 terms �all propor-
tional to a Laguerre polynomial of order n�; these combina-
tions will have n nodes. However, scattering between equiva-
lent Dirac points �=�� gives rise to terms that contain both In
and In+1, and hence contain combinations of Laguerre poly-
nomials of different orders. In general one cannot predict the
exact number of nodes of such combinations.

The second observation is that the high-intensity features
show, besides the Laguerre polynomial dependence, a Gauss-
ian decay on a scale of a few times the inverse magnetic

length e−q2lB
2 /4. The third observation is that the expression in

Eq. �20� contains rotationally asymmetric phase factors. The

terms of the form eiqxqylB
2 /2 cancel in the final expression of �̃

where only products of an integral of the type Imn and of a

FIG. 1. FTSTS spectrum for a monolayer graphene sample with
a single delta-function impurity, for an energy E=0 inside the ze-
roth LL, and lB /a=7. The BZ is indicated by dashed lines.
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complex conjugate of such an integral appear. The other
complex phase factors qx� iqy only appear if m�n, and
hence, as it can be seen from Eq. �19�, only for processes
involving scattering between nonequivalent nodes ������.
This type of scattering corresponds to coupling between the
LL wave functions �n and �n+1. For the nonrelativistic QHE
this coupling can only arise for the transition of a quasipar-
ticle between two distinct �energy separated� Landau levels.
However, we see that for graphene, due to the spinorial
structure of the wave function, such ��n ,�n+1� coupling oc-
curs naturally inside the same LL, and appears to be a mani-
festation of the chirality of the graphene quasiparticles.

We have already discussed the particular case of the ze-
roth Landau level n=−1. To illustrate the observations above
we focus on the FTSTS spectra in the second Landau level
�n=1�. This allows us to observe the node structure of the
results in more detail than for n=0 �first LL�. The Imn inte-
grals are given by

I11�q�� = ���2 − q2lB
2�e−�qx − iqy�2lB

2 /4,

I12�q�� = ���qx − iqy��4 − q2lB
2�e−�qx − iqy�2lB

2 /4,

I21�q�� = − ���qx + iqy��4 − q2lB
2�e−�qx − iqy�2lB

2 /4,

I22�q�� = ���8 + q2lB
2�q2lB

2 − 8��e−�qx − iqy�2lB
2 /4. �21�

In Figs. 2 and 3 we plot the real part of the FT of the LDOS,
first for an unrealistically large magnetic field, B=900 T
�Fig. 2� as well as for a physical B=50 T �Fig. 3�. In the first
case the corresponding energy for the second LL is of the
order of 1.4 V which makes the linear approximation for the
spectrum invalid. However we use it to illustrate qualita-

tively our results, as the magnetic length is lB=7a, which
gives rise to larger and better resolved features. For the more
physical case of B=50 T, as well as for smaller magnetic
fields, these features should be observable for energies
smaller or equal to 400 meV, for which the linear approxi-
mation is still reasonable.16 However, at fields of the order of
or smaller 50 T, the magnetic length is of the order of or
larger than 26.5a, which gives rise to sharper features, there-
fore harder to resolve in momentum space, as it can be seen
in Fig. 3. Thus even for the very large values of the magnetic
field of 50 T the distinguishing characteristics of these fea-
tures may be in an actual experiment at the limit of observ-
ability due to a lack of precision in the momentum-space
maps, and more precise measurements at higher magnetic
fields may be needed to achieve this in the future.

For both values of the magnetic field there exist regions of
high intensity corresponding to both intranodal and intern-
odal scattering which exhibit maxima and minima super-
posed over a Gaussian decay; the distance between the
maxima and minima is proportional to the inverse magnetic
length. The high-intensity regions corresponding to scatter-
ing between nonequivalent Dirac points ������ have only
one zero-intensity node �n=1� in their radial dependence, as
expected �see Figs. 4�a� and 4�b��. The intensity also goes to
zero at the center of these regions �q=0� because of the
qx� iqy factors in Eq. �21�. The high-intensity region corre-
sponding to scattering inside the same Dirac point �located at

FIG. 2. �a� FTSTS spectrum for a monolayer graphene sample
with a single delta-function impurity, for an energy equal to the
energy of the second LL, i.e., �=1.4 V, and for lB /a=7,
�B=900 T�. The BZ is indicated by dashed lines. �b� Horizontal cut
through the spectrum depicted in �a� for ky =0 �in arbitrary units�.
For clarity, the intensity of the features at the corners of the BZ was
multiplied by a factor of 2.

FIG. 3. The real part of the FTSTS spectra for a monolayer
graphene sample with a single delta-function impurity, for an en-
ergy equal to the energy of the second LL, i.e., ��400 meV, and
lB /a=26.5 �B=50 T�. The intensity of the features at the corners of
the BZ was multiplied by a factor of 2.

FIG. 4. The imaginary part of the FTSTS spectrum for a mono-
layer graphene sample with a single delta-function impurity, for
�=1 eV, and lB /a=7 �B=900 T�. As before, the intensity of the
features at the corners of the BZ was multiplied by a factor of 2.
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the center of the BZ� has n+1=2 nodes, while the high-
intensity features corresponding to scattering between
equivalent Dirac points ��=��� show a structure of minima
and maxima similar to that of the central feature, but no
zero-intensity node.

Also, as noted above, the features corresponding to scat-
tering between equivalent Dirac points are rotationally sym-
metric �depend only on the magnitude q�. However, for scat-
tering between nonequivalent Dirac points, ��q�� is
proportional to �qx� iqy�2, which breaks rotational symme-
try. This also happens in the imaginary part of the FTSTS
spectrum, depicted in Fig. 4.

To conclude, we have computed the effect of single-
impurity scattering on the Fourier transform of the LDOS in
the presence of a strong magnetic field. We have found that
the FTSTS spectra contain high-intensity regions corre-
sponding both to scattering processes in which quasiparticles
remain at the same Dirac point �intranodal�, and to scattering
processes in which quasiparticles hop between different
Dirac points �internodal�. Both types of processes give rise to
features that contain information about the wave function of
the electrons in the quantum-Hall state �decay length,
maxima, zeroes, minima�. While scattering between equiva-
lent nodes gives rise to rotationally symmetric features, the
features coming from scattering between nonequivalent
nodes break this symmetry, manifesting the chirality of the
quasiparticles. A special situation arises for energies inside
the zeroth LL when we observe no features corresponding to
scattering between nonequivalent nodes. This should gives
rise to a smoother spatial dependence of the LDOS than for
the energies corresponding to higher Landau levels.

We focus on a localized impurity, but we expect our re-
sults to be quite similar for an extended Coulomb impurity.
The most significant difference will be a reduction of the
ratio between the intensity of the features away from the
center and at the center. It would be interesting to see what
happens if other types of disorder are considered which af-
fect not only the electronic density, but also the hopping
parameters in the neighborhood of the impurity. Unlike the
potential disorder, the hopping disorder couples the non-
equivalent valleys even in the zeroth LL, and one expects to
observe the corresponding internodal scattering features in
the FTSTS spectra for all LLs. Therefore we propose to use
the ratio between the intranodal and internodal scattering

features not only as a good indicator of the extension of the
impurity potential, but also in the zeroth LL as an indicator
of the form of the impurity potential �potential disorder ver-
sus hopping disorder�.

The relevant physical regime for the magnetic field is be-
tween 20–50 T, but it is possible that even for the largest
magnetic fields of 50 T the features may be too sharp to
distinguish clearly due to precision limitations in current ex-
periments. The dominant features we describe �for the sec-
ond LL� are expected to arise for energies of the tip matching
the energies of the LL’s, i.e., 200–400 meV. It would be
interesting to study what happens for energies of the tip situ-
ated between two Landau levels in the presence of multiple
impurities. Because of disorder, the LL’s are expected to
broaden, which translates spatially into a LL energy that
fluctuates spatially. Thus, for some energies, one may have
overlapping contributions from various LL’s, as well as more
complicated �and not so neat� features arising in the FTSTS
spectra.

We have found that the FTSTS spectra can give informa-
tion about the electronic wave function in graphene at ener-
gies matching the LL energy �decay length, nodes, etc.�, as
well as about the nature of the disorder. We hope that a
comparison between this theoretical study and experiments
will shed light on the nature of the electronic states in epi-
taxial graphene under high magnetic field, where quantum-
Hall features such as the LL’s in the DOS are present, but no
quantum-Hall effect is observed. Preliminary experimental
observations of the spatial dependence of the LDOS and of
the LL’s in epitaxial graphene grown on the carbon face of
SiC are presented in Ref. 17, but a more comprehensive
study at higher magnetic fields would be required. In particu-
lar it would be interesting to test whether the quasiparticles
in epitaxial graphene are indeed described by typical
quantum-Hall wave functions, and if so, whether it is pos-
sible to establish the nature of disorder in both epitaxial and
in exfoliated graphene. Identifying the form of the wave
function, as well as the nature of disorder will help under-
stand why the quantum-Hall effect is not commonly ob-
served in epitaxial graphene. We note that, concomitantly
with our paper, similar results have also been presented in
Ref. 18.

We would like to thank J.-N. Fuchs, M. Goerbig, G. Mon-
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